跳转至

笔记

劝退指南:不是博客,而是笔记,甚至是草稿

写笔记是为了让自己看懂,写博客是为了让别人看懂,不一样的,认真做好后者对自己各方面能力的提升会非常大(比如表达能力),其实很多时候记笔记就是写几段自己能看懂的表达,很随性,但写博客更像是写一篇论文,需要自己先彻底搞明白一个东西后才能输出1

我一直努力将内容写成博客。但是后来发现,根本没有时间和心思,来为别人解释很多事情。我的想法是最多是解释给多年后忘记一切的自己听,我还能快速看懂。能达到这点,这些内容的意义对于我就已经足够。

从读者的角度,我并不会推荐任何人阅读这个网站的内容:因为你会遇到以下令人烦躁的场景

  1. 完整性差:某些笔记写着写着就没有了,内容是残缺的。甚至只有一个标题。(这是因为我没有时间填充内容,或者我的研究和注意力转变方向了,弃坑了弃坑了~)
  2. 可读性一般:很少有起承转合的解释语句,笔记的内容逻辑几乎全部靠多级标题维持.
  3. 笔记间关联性低:从读者的角度是看不到本人是如何使用多级文件夹,来组织划分笔记间的内容逻辑。如果你在搜索栏找不到你想要的关键词,那大概率我没接触到这方面的内容。
知识是自然聚类和融合的,但需要两级的文档来过滤内容和撰写正文。小而全、无懈可击的内容应该是所追求的

导致这种情况,其实和我对知识产出过程的理解有关,我认为过程是 知识是自然聚类和融合的

  1. 接触到领域对象(新建文件夹)
  2. 阅读各种文献网站(零散的知识进行简单的聚类)
  3. 上手实践和研究(踩了许多坑,有或多或少的感悟)。

而且三者的占比是前面远大于后面,这样看来我这网站大部分的内容岂不是都是笔记的草稿

我以这样的方式撰写我的正式的毕业论文时,发现这样的处理有利有弊:

  1. 优势:
    1. 速度?:能快速的罗列出内容,填充了大量垃圾内容
    2. 完备性:保留所有必要的相关信息,
  2. 劣势:
    1. 对工作进度的误判:罗列的大量页数迷惑了自己,以为进度很快。其实仔细思路内容的有效性、逻辑关联性。核心观点的提炼。遣词造句都极其耗费时间。
      1. 最重要是导致只看页数的领导对你工作速度的误判导致的嫌弃:一周前就看见里论文写了60页了,怎么两周了还没写完。或者你都60页了快结束了,来帮帮我弄这个~阿米诺斯~
    2. 需要返工:重新整理罗列的垃圾内容,至少需要三倍以上的时间才能整理好。

总结:知识是自然聚类和融合的思想是没错的,但是在实际生产应用时需要两级的信息筛选过滤体系:区分出正文内的todo内容和未整理的archived信息。通过将罗列的完备信息初步分类归档(有基础的逻辑)以待后续使用,正文精心撰写每一句话保证不需要大量返工。

导言

快速调研多模态强化学习及其ai infra(verl类似)的下一步方向、技术点和与LLM RL的差异点

AI调研真实性问题以及应对:

  • 问题:现在的 Arxiv 时代,处于“狂野西部”状态。迭代极快,但也伴随着刷榜(SOTA-chasing)、数据污染、甚至直接编造数据。
  • 应对:
    • 看竞场:对于大模型,唯一的真理是“盲测竞技场 lmarena”的排名,而不是论文里的表格。
    • 看时间:AI论文日新月异,要注意发布时间;
    • 看落地:已有模型使用的方法,至少能证明方案是可行和正向有效的;
    • 看出身:是 Meta/Google/DeepMind 吗?是知名教授吗? -> 是,则细读。
    • 看开源:Hugging Face 上有模型吗?GitHub 有星吗? -> 有,可信度 +50%。
    • 看复现:Issue、Twitter 和 Reddit 上有人复现成功吗? -> 有,纳入核心趋势。
    • 看引用:如果这篇论文刚出不久就被很多高质量论文引用,说明其思路已被同行关注。

时刻关注前沿:

  1. GRPO/AdvancedResearch
  2. Awesome-MLLM-Reasoning-Collection
  3. Awesome-RL-for-LRMs
  4. Awesome-AgenticLLM-RL-Papers

Pytorch 2.5 :Dataset & Dataloader

导言

  • 数据集与数据加载器:学习如何使用torch.utils.data.Dataset和DataLoader来加载和处理数据。
  • 数据预处理:介绍常用的数据预处理方法,如归一化、数据增强等。

Blind Date Tips

导言

相亲是展现真实自我,寻找志趣相投另一半的过程。