跳转至

2025

Next of My Ascend Career

导言

作为卖NPU AI加速卡的软件员工, 目标是将昇腾的底层算力与上层多模态应用需求精准对接,释放昇腾AI算力,让客户看到NPU的性能、性价比、易用性、客户自身业务的使用需求。

AI Post Traning: DPO

导言

在LLM对齐的早期探索中,研究者们建立了两种影响深远的基础范式。

  1. 一种是基于强化学习的PPO,它将经典的RL框架引入LLM微调,通过复杂的系统协调实现了强大的性能;
  2. 另一种是DPO,它通过深刻的理论洞见,将对齐问题转化为一个更简洁的监督学习问题,显著提升了训练的稳定性和效率。

鉴于PPO-RLHF的复杂性,研究者们开始寻求更简洁、更直接的对齐方法。直接偏好优化(Direct Preference Optimization, DPO)应运而生,它巧妙地绕过了显式的奖励建模和复杂的RL优化循环,为偏好对齐提供了一个优雅的替代方案。

这篇文章介绍DPO, 和Step-Video论文介绍了Video-DPO, 这类训练中最后通过人工标注优化的方法。

必看好文6

宛如泥潭的大型项目开发困境

导言

当时我选择一线的原因是决定能最解决客户,每个工作能产生最大的价值。

通过一段时间的开发,我感觉在一线开发就像在泥潭里前进:走得越快越远,泥潭陷得越深,前进阻力越大。

困境为何而来,如何解决困境,是我想讨论的重点。

Continuous Integration, CI

导言

在交付PTA需求的时候,发现需求在测试人员的更大的测试规模下出现了问题:

在增多了不同的测试样例,和不同的测试设备(910A,910B,310P)时;程序是否可执行,性能是否达标,精度是不是正常;都有待监控。

说明在开发过程中,我构建个人的每日测试框架,持续监控开发的测试和性能。

集成 windmill-labs / windmill。

AI Model Visualization

导言

作为一个AI初学者,总是遇到以下场景:

  1. 客户正在基于NV开发一个AI模型,需要同步的做昇腾适配。手上只有NV下的代码。
  2. 往往很难将论文里的AI模型的图,和代码里的每一层以及参数对应起来。

设计期望:

  1. 在模型开发的过程中,能简单插入,来明确当前模块的大致信息。
  2. 名称,类型(卷积层,池化层),输入/输出/参数, 执行的时间(第一次)。
  3. 可视化
  4. 格式兼容cpprinter。
  5. 能体现出TP,CP等并行策略的效果。

大致思路:

  • 还是借助chrome://tracing格式,来设计类似PyPrinter的工具。
  • 早期可以使用VizTracer代替。